Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pept Sci ; : e3598, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531546

RESUMO

Bergofungin D is a helical peptide of the peptaibol family consisting of 14 amino acids, six of which are the helix inducer aminoisobutyric acid (Aib). In the second third of the sequence, a hydroxyproline causes a bending of the helix and a disruption of the hydrogen bond network, and Aib7 is the only amino acid in this region involved in the hydrogen bond network. Therefore, modification of this residue can serve as a probe to monitor the effect of introducing amino acid substitutions on this more fragile helical turn. To validate this approach, we simplified the original bergofungin D by reducing the number of non-classical amino acids, replacing the (R)-isovaleric acid by its enantiomer or an Aib and the hydroxyproline with a proline, respectively, without affecting its secondary structure. Within the modified structure, we replaced Aib7-Aib8 by its 1,2,3-triazolodipeptide equivalent or Aib7 by a serine or a dehydrobutyrine. We have reported and analyzed five crystal structures, three of which are new, demonstrating the usefulness of the modified bergofungin D as a probe for monitoring the introduction of amino acid substitutions within a helical structure.

2.
J Agric Food Chem ; 72(11): 5887-5897, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441878

RESUMO

Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 µM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 µM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 µM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 µM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.


Assuntos
Glutationa Transferase , Luteolina , Ratos , Animais , Humanos , Glutationa Transferase/metabolismo , Mucosa Bucal/metabolismo , Compostos de Sulfidrila , Glutationa/metabolismo
3.
FEBS Lett ; 597(24): 3038-3048, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37933500

RESUMO

Glutathione transferases (GST) are detoxification enzymes that conjugate glutathione to a wide array of molecules. In the honey bee Apis mellifera, AmGSTD1 is the sole member of the delta class of GSTs, with expression in antennae. Here, we structurally and biochemically characterized AmGSTD1 to elucidate its function. We showed that AmGSTD1 can efficiently catalyse the glutathione conjugation of classical GST substrates. Additionally, AmGSTD1 exhibits binding properties with a range of odorant compounds. AmGSTD1 has a peculiar interface with a structural motif we propose to call 'sulfur sandwich'. This motif consists of a cysteine disulfide bridge sandwiched between the sulfur atoms of two methionine residues and is stabilized by CH…S hydrogen bonds and S…S sigma-hole interactions. Thermal stability studies confirmed that this motif is important for AmGSTD1 stability and, thus, could facilitate its functions in olfaction.


Assuntos
Glutationa Transferase , Glutationa , Abelhas , Animais , Glutationa Transferase/metabolismo , Catálise , Glutationa/metabolismo , Enxofre
4.
Molecules ; 28(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513474

RESUMO

Neuropilin 1 (NRP1), a cell-surface co-receptor of a number of growth factors and other signaling molecules, has long been the focus of attention due to its association with the development and the progression of several types of cancer. For example, the KDKPPR peptide has recently been combined with a photosensitizer and a contrast agent to bind NRP1 for the detection and treatment by photodynamic therapy of glioblastoma, an aggressive brain cancer. The main therapeutic target is a pocket of the fragment b1 of NRP1 (NRP1-b1), in which vascular endothelial growth factors (VEGFs) bind. In the crystal packing of native human NRP1-b1, the VEGF-binding site is obstructed by a crystallographic symmetry neighbor protein, which prevents the binding of ligands. Six charged amino acids located at the protein surface were mutated to allow the protein to form a new crystal packing. The structure of the mutated fragment b1 complexed with the KDKPPR peptide was determined by X-ray crystallography. The variant crystallized in a new crystal form with the VEGF-binding cleft exposed to the solvent and, as expected, filled by the C-terminal moiety of the peptide. The atomic interactions were analyzed using new approaches based on a multipolar electron density model. Among other things, these methods indicated the role played by Asp320 and Glu348 in the electrostatic steering of the ligand in its binding site. Molecular dynamics simulations were carried out to further analyze the peptide binding and motion of the wild-type and mutant proteins. The simulations revealed that specific loops interacting with the peptide exhibited mobility in both the unbound and bound forms.


Assuntos
Neuropilina-1 , Fator A de Crescimento do Endotélio Vascular , Humanos , Neuropilina-1/genética , Neuropilina-1/metabolismo , Ligantes , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Eletricidade Estática , Peptídeos/genética , Mutação
5.
Chemistry ; 29(39): e202301615, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37436110

RESUMO

Invited for the cover of this issue is the group of Gilles Guichard at the University of Bordeaux. The image depicts sketches and technical drawing tools to illustrate the creation and precise characterization of foldamer tertiary structures. Read the full text of the article at 10.1002/chem.202300087.

6.
Chemistry ; 29(39): e202300087, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-36943398

RESUMO

Oligomers designed to form a helix-turn-helix super-secondary structure have been prepared by covalently bridging aliphatic oligourea foldamer helices with either rigid aromatic or more flexible aliphatic spacers. The relative helix orientation in these dimers was investigated at high resolution using X-ray diffraction analysis. In several cases, racemic crystallography was used to facilitate crystallization and structure determination. All structures were solved by direct methods. Well-defined parallel helical hairpin motifs were observed in all cases when 4,4'-methylene diphenyl diisocyanate was employed as a dimerizing agent, irrespective of primary sequence and chain length.

7.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758482

RESUMO

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Assuntos
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Trametes/metabolismo , Glutationa Transferase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
8.
Biomolecules ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291676

RESUMO

Glutathione transferases (GSTs) constitute a widespread superfamily of enzymes notably involved in detoxification processes and/or in specialized metabolism. In the cyanobacterium Synechocsytis sp. PCC 6803, SynGSTC1, a chi-class GST (GSTC), is thought to participate in the detoxification process of methylglyoxal, a toxic by-product of cellular metabolism. A comparative genomic analysis showed that GSTCs were present in all orders of cyanobacteria with the exception of the basal order Gloeobacterales. These enzymes were also detected in some marine and freshwater noncyanobacterial bacteria, probably as a result of horizontal gene transfer events. GSTCs were shorter of about 30 residues compared to most cytosolic GSTs and had a well-conserved SRAS motif in the active site (10SRAS13 in SynGSTC1). The crystal structure of SynGSTC1 in complex with glutathione adopted the canonical GST fold with a very open active site because the α4 and α5 helices were exceptionally short. A transferred multipolar electron-density analysis allowed a fine description of the solved structure. Unexpectedly, Ser10 did not have an electrostatic influence on glutathione as usually observed in serinyl-GSTs. The S10A variant was only slightly less efficient than the wild-type and molecular dynamics simulations suggested that S10 was a stabilizer of the protein backbone rather than an anchor site for glutathione.


Assuntos
Glutationa Transferase , Synechocystis , Glutationa Transferase/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Aldeído Pirúvico , Glutationa/metabolismo , Estrutura Secundária de Proteína
9.
Org Biomol Chem ; 20(40): 7907-7915, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36173021

RESUMO

The synthesis and conformational study of N-substituted ß-alanines with tert-butyl side chains is described. The oligomers prepared by submonomer synthesis and block coupling methods are up to 15 residues long and are characterised by amide bonds in the cis-conformation. A conformational study comprising experimental solution NMR spectroscopy, X-ray crystallography and molecular modeling shows that despite their intrinsic higher conformational flexibility compared to their α-peptoid counterparts, this family of achiral oligomers adopt preferred secondary structures including a helical conformation close to that described with (1-naphthyl)ethyl side chains but also a novel ribbon-like conformation.


Assuntos
Peptoides , Peptoides/química , Estrutura Secundária de Proteína , Cristalografia por Raios X , Modelos Moleculares , Amidas/química
10.
Front Mol Biosci ; 9: 958586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032685

RESUMO

Glutathione transferases (GSTs) constitute a widespread superfamily of enzymes notably involved in xenobiotic detoxification and/or in specialized metabolism. Populus trichocarpa genome (V4.1 assembly, Phytozome 13) consists of 74 genes coding for full-length GSTs and ten likely pseudogenes. These GSTs are divided into 11 classes, in which the tau class (GSTU) is the most abundant with 54 isoforms. PtGSTU19 and 20, two paralogs sharing more than 91% sequence identity (95% of sequence similarity), would have diverged from a common ancestor of P. trichocarpa and P. yatungensis species. These enzymes display the distinctive glutathione (GSH)-conjugation and peroxidase activities against model substrates. The resolution of the crystal structures of these proteins revealed significant structural differences despite their high sequence identity. PtGSTU20 has a well-defined deep pocket in the active site whereas the bottom of this pocket is disordered in PtGSTU19. In a screen of potential ligands, we were able to identify an interaction with flavonoids. Some of them, previously identified in poplar (chrysin, galangin, and pinocembrin), inhibited GSH-conjugation activity of both enzymes with a more pronounced effect on PtGSTU20. The crystal structures of PtGSTU20 complexed with these molecules provide evidence for their potential involvement in flavonoid transport in P. trichocarpa.

11.
Acta Crystallogr D Struct Biol ; 77(Pt 10): 1292-1304, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605432

RESUMO

The mutual penetration of electron densities between two interacting molecules complicates the computation of an accurate electrostatic interaction energy based on a pseudo-atom representation of electron densities. The numerical exact potential and multipole moment (nEP/MM) method is time-consuming since it performs a 3D integration to obtain the electrostatic energy at short interaction distances. Nguyen et al. [(2018), Acta Cryst. A74, 524-536] recently reported a fully analytical computation of the electrostatic interaction energy (aEP/MM). This method performs much faster than nEP/MM (up to two orders of magnitude) and remains highly accurate. A new program library, Charger, contains an implementation of the aEP/MM method. Charger has been incorporated into the MoProViewer software. Benchmark tests on a series of small molecules containing only C, H, N and O atoms show the efficiency of Charger in terms of execution time and accuracy. Charger is also powerful in a study of electrostatic symbiosis between a protein and a ligand. It determines reliable protein-ligand interaction energies even when both contain S atoms. It easily estimates the individual contribution of every residue to the total protein-ligand electrostatic binding energy. Glutathione transferase (GST) in complex with a benzophenone ligand was studied due to the availability of both structural and thermodynamic data. The resulting analysis highlights not only the residues that stabilize the ligand but also those that hinder ligand binding from an electrostatic point of view. This offers new perspectives in the search for mutations to improve the interaction between the two partners. A proposed mutation would improve ligand binding to GST by removing an electrostatic obstacle, rather than by the traditional increase in the number of favourable contacts.


Assuntos
Benzofenonas/metabolismo , Glutationa Transferase/metabolismo , Modelos Moleculares , Polyporaceae/enzimologia , Software , Eletricidade Estática , Termodinâmica , Benzofenonas/química , Glutationa Transferase/química , Ligação de Hidrogênio , Ligantes
12.
Bioorg Med Chem ; 45: 116313, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325324

RESUMO

The [3.3.0]furofuranone structure is found in numerous families of biologically active natural products. We took advantage of the stereodiversity afforded by carbohydrate derivatives to prepare several compounds structurally similar to goniofufurone and crassalactones which are natural cytotoxic agents. We designed and synthesized several stereoisomers of these natural compounds via lactonization of C-glycosyl compounds bearing an hydroxyl on position 4 and a methyl ester on the pseudo-anomeric positionThe reactivity of this bicyclic moiety was explored through etherification of hydroxyls in position 5 and 7 and various substituants (halogen, phenyl, benzyl, cynanmoyl) were introduced. The anti-proliferative properties of these mimics were then evaluated on various cancer cell lines and two compounds 24 and 35 demonstrated IC50 value of 1.34 µM (U251) and 7.60 µM (U87) respectively.


Assuntos
Antineoplásicos/farmacologia , Furanos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/síntese química , Furanos/química , Humanos , Masculino , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Antioxidants (Basel) ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069657

RESUMO

Glutaredoxins (GRXs) are thioredoxin superfamily members exhibiting thiol-disulfide oxidoreductase activity and/or iron-sulfur (Fe-S) cluster binding capacities. These properties are determined by specific structural factors. In this study, we examined the capacity of the class I Chlamydomonas reinhardtii GRX2 recombinant protein to catalyze both protein glutathionylation and deglutathionylation reactions using a redox sensitive fluorescent protein as a model protein substrate. We observed that the catalytic cysteine of the CPYC active site motif of GRX2 was sufficient for catalyzing both reactions in the presence of glutathione. Unexpectedly, spectroscopic characterization of the protein purified under anaerobiosis showed the presence of a [2Fe-2S] cluster despite having a presumably inadequate active site signature, based on past mutational analyses. The spectroscopic characterization of cysteine mutated variants together with modeling of the Fe-S cluster-bound GRX homodimer from the structure of an apo-GRX2 indicate the existence of an atypical Fe-S cluster environment and ligation mode. Overall, the results further delineate the biochemical and structural properties of conventional GRXs, pointing to the existence of multiple factors more complex than anticipated, sustaining the capacity of these proteins to bind Fe-S clusters.

14.
Front Mol Biosci ; 8: 642606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816557

RESUMO

Conjugative transfer is a major threat to global health since it contributes to the spread of antibiotic resistance genes and virulence factors among commensal and pathogenic bacteria. To allow their transfer, mobile genetic elements including Integrative and Conjugative Elements (ICEs) use a specialized conjugative apparatus related to Type IV secretion systems (Conj-T4SS). Therefore, Conj-T4SSs are excellent targets for strategies that aim to limit the spread of antibiotic resistance. In this study, we combined structural, biochemical and biophysical approaches to study OrfG, a protein that belongs to Conj-T4SS of ICESt3 from Streptococcus thermophilus. Structural analysis of OrfG by X-ray crystallography revealed that OrfG central domain is similar to VirB8-like proteins but displays a different quaternary structure in the crystal. To understand, at a structural level, the common and the diverse features between VirB8-like proteins from both Gram-negative and -positive bacteria, we used an in silico structural alignment method that allowed us to identify different structural classes of VirB8-like proteins. Biochemical and biophysical characterizations of purified OrfG soluble domain and its central and C-terminal subdomains indicated that they are mainly monomeric in solution but able to form an unprecedented 6-mer oligomers. Our study provides new insights into the structural analysis of VirB8-like proteins and discusses the interplay between tertiary and quaternary structures of these proteins as an essential component of the conjugative transfer.

15.
Fungal Genet Biol ; 148: 103506, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450403

RESUMO

The Omega class of glutathione transferases (GSTs) forms a distinct class within the cytosolic GST superfamily because most of them possess a catalytic cysteine residue. The human GST Omega 1 isoform was first characterized twenty years ago, but it took years of work to clarify the roles of the human isoforms. Concerning the kingdom of fungi, little is known about the cellular functions of Omega glutathione transferases (GSTOs), although they are widely represented in some of these organisms. In this study, we re-assess the phylogeny and the classification of GSTOs based on 240 genomes of mushroom-forming fungi (Agaricomycetes). We observe that the number of GSTOs is not only extended in the order of Polyporales but also in other orders such as Boletales. Our analysis leads to a new classification in which the fungal GSTOs are divided into two Types A and B. The catalytic residue of Type-A is either cysteine or serine, while that of Type-B is cysteine. The present study focuses on Trametes versicolor GSTO isoforms that possess a catalytic cysteine residue. Transcriptomic data show that Type-A GSTOs are constitutive enzymes while Type-B are inducible ones. The crystallographic analysis reveals substantial structural differences between the two types while they have similar biochemical profiles in the tested conditions. Additionally, these enzymes have the ability to bind antioxidant molecules such as wood polyphenols in two possible binding sites as observed from X-ray structures. The multiplication of GSTOs could allow fungal organisms to adapt more easily to new environments.


Assuntos
Agaricales/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Variação Genética , Glutationa Transferase/química , Glutationa Transferase/genética , Filogenia , Agaricales/química , Agaricales/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Glutationa Transferase/classificação , Glutationa Transferase/metabolismo , Modelos Moleculares , Conformação Proteica
16.
Biosci Rep ; 40(10)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32970113

RESUMO

Sinorhizobium meliloti is a nitrogen-fixing bacterium forming symbiotic nodules with the legume Medicago truncatula. S. meliloti possesses two BolA-like proteins (BolA and YrbA), the function of which is unknown. In organisms where BolA proteins and monothiol glutaredoxins (Grxs) are present, they contribute to the regulation of iron homeostasis by bridging a [2Fe-2S] cluster into heterodimers. A role in the maturation of iron-sulfur (Fe-S) proteins is also attributed to both proteins. In the present study, we have performed a structure-function analysis of SmYrbA showing that it coordinates diverse divalent metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) using His32 and His67 residues, that are also used for Fe-S cluster binding in BolA-Grx heterodimers. It also possesses the capacity to form heterodimers with the sole monothiol glutaredoxin (SmGrx2) present in this species. Using cellular approaches analyzing the metal tolerance of S. meliloti mutant strains inactivated in the yrbA and/or bolA genes, we provide evidence for a connection of YrbA with the regulation of iron homeostasis. The mild defects in M. truncatula nodulation reported for the yrbA bolA mutant as compared with the stronger defects in nodule development previously observed for a grx2 mutant suggest functions independent of SmGrx2. These results help in clarifying the physiological role of BolA-type proteins in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cátions Bivalentes/metabolismo , Metais/metabolismo , Sinorhizobium meliloti/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Sequência Conservada/genética , Histidina/genética , Histidina/metabolismo , Medicago truncatula/microbiologia , Sinorhizobium meliloti/genética , Relação Estrutura-Atividade
17.
Chem Commun (Camb) ; 56(57): 7921-7924, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32529998

RESUMO

The insertion of cyclic building blocks in oligoureas to stabilize or modulate the properties of the 12/14-helix was often fruitless. We herein propose a fully compatible highly constrained building block that could be incorporated into oligoureas to develop highly stable and functional oligoureas helices.


Assuntos
Ureia/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Ureia/análogos & derivados
18.
Front Plant Sci ; 10: 608, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191562

RESUMO

Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.

19.
Protein Sci ; 28(6): 1143-1150, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30972861

RESUMO

Trametes versicolor glutathione transferase Omega 3S (TvGSTO3S) catalyzes the conjugation of isothiocyanates (ITC) with glutathione (GSH). Previously, this isoform was investigated in depth both biochemically and structurally. Structural analysis of complexes revealed the presence of a GSH binding site (G site) and a deep hydrophobic binding site (H site) able to bind plant polyphenols. In the present study, crystals of apo TvGSTO3S were soaked with glutathionyl-phenethylthiocarbamate, the product of the reaction between GSH and phenethyl isothiocyanate (PEITC). On the basis of this crystal structure, we show that the phenethyl moiety binds in a new site at loop ß2 -α2 while the glutathionyl part exhibits a particular conformation that occupies both the G site and the entrance to the H site. This binding mode is allowed by a conformational change of the loop ß2 -α2 at the enzyme active site. It forms a hydrophobic slit that stabilizes the phenethyl group at a distinct site from the previously described H site. Structural comparison of TvGSTO3S with drosophila DmGSTD2 suggests that this flexible loop could be the region that binds PEITC for both isoforms. These structural features are discussed in a catalytic context.


Assuntos
Glutationa Transferase/química , Glutationa/biossíntese , Isotiocianatos/metabolismo , Trametes/enzimologia , Sítios de Ligação , Biocatálise , Glutationa/química , Glutationa Transferase/metabolismo , Isotiocianatos/química , Modelos Moleculares , Estrutura Molecular
20.
FEBS Lett ; 592(18): 3163-3172, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30112765

RESUMO

Glutathione transferases (GSTs) from the Xi and Omega classes have a catalytic cysteine residue, which gives them reductase activities. Until now, they have been assigned distinct substrates. While Xi GSTs specifically reduce glutathionyl-(hydro)quinones, Omega GSTs are specialized in the reduction of glutathionyl-acetophenones. Here, we present the biochemical and structural analysis of TvGSTX1 and TvGSTX3 isoforms from the wood-degrading fungus Trametes versicolor. TvGSTX1 reduces GS-menadione as expected, while TvGSTX3 reduces both Xi and Omega substrates. An in-depth structural analysis indicates a broader active site for TvGSTX3 due to specific differences in the nature of the residues situated in the C-terminal helix α9. This feature could explain the catalytic duality of TvGSTX3. Based on phylogenetic analysis, we propose that this duality might exist in saprophytic fungi and ascomycetes.


Assuntos
Cisteína/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa Transferase/metabolismo , Trametes/enzimologia , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glutationa/análogos & derivados , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/classificação , Glutationa Transferase/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Filogenia , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trametes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...